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The mean velocity of slightly buoyant and heavy 
particles in turbulent flow in a pipe 
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SUMMARY 
A large number of small spheres of the same size were injected 

successively into a horizontal pipe conveying water at constant 
mean velocity, and their times of transit were measured. The  
mean velocity of the spheres that were either somewhat heavier or 
lighter than water was less than that of those of neutral density; 
for those having a terminal velocity in water within 104 of the 
mean velocity of the water in the pipe, the discrepancy was only 
about 0.1 y/o. The  dispersion of the times of transit of the spheres 
was almost independent of their density. A theory is developed 
to show how the mean velocity of the spheres depends upon their 
relative density and size. 

1. INTRODUCTION 
I n  a previous paper (Batchelor, Binnie & Phillips 1955) an account 

was given of experiments in which numerous spheres of almost neutral 
density were injected in turn into a turbulent stream of water in a horizontal 
pipe and their passage timed. I n  this way a method was devised for finding 
the discharge of water through the pipe and the fluctuation in the times 
of travel of the spheres. It was shown theoretically that the mean velocity 
of material particles of the liquid is equal to the discharge velocity U, 
defined as the discharge, at some cross-section, averaged over a long time 
and divided by the cross-section. A satisfactory modification was developed 
to account for the difference between Uand the mean velocity U ( M )  of spheres 
of small but finite size, this difference being a function of cc, the ratio of the 
diameter of the spheres to that of the pipe. The  density of the spheres 
was such that their terminal velocity in water was within i: 1% of the 
discharge velocity, as determined by a measuring tank at the pipe outlet.. 
This standard of density is not easy to achieve under the conditions of 
temperature and pressure prevailing in the pipe ; and before the method 
can be used with confidence to determine the discharge velocity through 
a large pipe-line, it is important to know the consequences when the above 
standard is slightly relaxed. An attempt to answer this question by means 
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of further experiments at the Engineering Laboratory, Cambridge, is 
described below. 

If the spheres are buoyant or heavy, their motion is modified in two 
ways. Firstly, the difference between the inertia of a sphere and that of 
an equal volume of fluid results in relative motion when the fluid surrounding 
the sphere is accelerated. Secondly, the effect of gravity is to modify the 
probability density of the sphere positions in such a way that for spheres 
denser than water the probability density is greater towards the bottom 
of the horizontal pipe than towards the top, and vice versa for spheres 
lighter than water. I t  may reasonably be supposed that the effect of gravity 
on the motion of the spheres is determined by the value of y, the ratio of 
their terminal velocity V to the discharge velocity U. The results of the 
experiments described in $ 3  suggest strongly that the inertia effect is 
negligible when y is small but that the gravity effect is not; we shall 
anticipate this result by writing the mean velocity of the spheres as U(a, y).  

In the light of experience the apparatus previously used was rebuilt 
in the manner explained in $2. The most important improvements were 
the introduction of an automatic device for injecting the spheres and of 
better methods of controlling and timing the discharge. More robust 
spheres were required in the new injection apparatus, and they were made 
of polythene in place of wax. I n  the experiments attention was confined 
to  spheres of diameter 0-2 in. in a pipe of diameter 2 in., hence cc was fixed 
at 0.1. The  Reynolds number, based on pipe diameter, was about 7 x lo4. 

The  experimental results make it clear that, to achieve the highest 
accuracy, the 1% standard of terminal velocity should be adhered to. 
However, the available evidence suggests that little advantage will follow 
from efforts to improve on this standard. Finally, in 5 4, an expression for 
U ( E ,  y )  is derived theoretically, and with the aid of the experimental results 
tentative predictions are made of its magnitude for values of a other 
than 0.1. 

2. DESCRIPTION OF APPARATUS 

The entire pipe-line was rebuilt in new galvanized steel tubing, the mean 
internal diameter of which in the working section was found by weighing 
the water required to fill each length. The  supply was through a 6-in. main 
from a large tank about 40 ft. above, in which the level was kept constant 
within & 1 in. Near the inlet a stainless-steel orifice-plate was inserted 
to act as a resistance additional to the wall friction. The experiments were 
nominally conducted at one velocity only, and all that was required to 
control the water flow was the complete opening of a valve. Nearby, the 
spheres were injected by means of the device shown in elevation in figure 1. 
The  long tube A, which extended to the centre-line of the pipe, could 
carry a charge of 100 spheres. The  spheres in it were pushed downwards 
by a small stream of water, supplied at a steady net head of a few inches 
to  the top of the tube and escaping at the bottom into the pipe. The electric 
motor B revolved the disc C, which near its periphery carried the vertical 



Mean velocity of particles in turbulent flow 89 

pin D. Close and parallel to the tube A a shaft was mounted to which a 
small arm was fixed at  each end. T h e  upper arm protruded above the 
disc, so that every 15 sec the shaft was rotated by the pin D through 90" 
and was then returned to its original position by a spring. T h e  bottom 
arm, which is shown more clearly in the plan and elevation drawn to a 
larger scale on the left of figure 1, engaged in a slot the lowest sphere in 
tube A ; thus, when the shaft rotated, the sphere was moved out into the 
main stream. Release was assisted by a small vane that deflected the stream 
downwards into the slot. 

n 

X 

t 

Figure 1 .  Injection apparatus. 

After passing round a bend the water entered on a long, straight and 
horizontal course. T h e  first 28 ft. served to remove the disturbance due 
to the bend. The  remainder was used for the timing measurements, and 
in it three lengths of Perspex tube were inserted, fitted with the same 
arrangement of three photo-cells and two Dekatron counters as was 
previously employed. Each sphere at the first station A started both 
counters, and stopped them in turn as it passed stations B and C. The  
lengths AB and BC were respectively 33.42 and 16.40 ft., and each 
injection provided two observations directly and one by difference. At 
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exit the water passed into a pool where the spheres were netted and then 
over a weir into a measuring tank. There the rise was timed at regular 
intervals with the aid of two vertical probes which started and stopped 
another Dekatron counter. All the counters were operated by the mains, 
and long-period errors in the mains frequency did not affect the measured 
ratio of the velocity of the sphere to the discharge velocity. 

Spheres made of the wax previously used were found to be too soft 
when tried in the new injection device, and this material was replaced by 
sheet polythene loaded to have a relative density close to unity. At first, 
the spheres were made in a cold press and by hand moulding after the 
material had been softened by heat. These processes accidentally produced 
considerable numbers of spheres in which a small air bubble was trapped. 
Later, hot injection into a mould was employed usually yielding slightly 
heavier spheres, and some of these were made heavier still by driving in 
the point of a pin. The terminal velocity of each sphere was measured 
in a tube 58 in. long. and the spheres were batched in terms of y, the ratio 
of this velocity to the discharge velocity, which was about 5-37 ft./sec. 
The head in the working section of the pipe was about 3 ft., and the spheres 
were tested at this pressure in case the presence of the bubbles made the 
spheres appreciably compressible, but in fact the terminal velocity even 
of the lightest spheres was found to be independent of the depth of immersion 
in the tube. The temperature coefficient of expansion of polythene is 
greater than that of water, and the temperature of the water in the laboratory 
circulating system was not under control ; but its variations were slow, 
and each batch of spheres was checked at the correct temperature immediately 
before use. Sufficient spheres were made to permit observations with five 
batches, for which y lay within the limits 0.04 to 0*03,0*02 to 0.01,O.Ol to 0, 
-0.01 to -0.02, -0.02 to -0.03, and a further batch at -0.0375, which 
was the mean for a mixture of batches - 0.03 to - 0.04 and - 0.04 to - 0.05. 
Here the negative sign denotes spheres lighter than water. At 15°C the 
relative densities of spheres for which y = 0.04 and 0.01 were calculated 
t o  be 1.042 and 1.005 respectively. 

3 .  EXPERIMENTAL RESULTS 

For each value of y,  200 observations were made of the times of transit 
of the spheres between the cross-sections A B  and AC, measurements of 
the discharge being taken at the same time at regular intervals. The mean 
velocity U ( a , y )  of the spheres was determined from equation (4) of the 
previous paper, which is 

U(M, y )  + X/T(X), 

where T(x )  is the average time taken for the spheres to travel a length x 
of the pipe. In  this equation there is a proportional error due to dispersion, 
which can be calculated with the aid of equation (19) of the previous paper. 
For M = 0.1 it amounted to about 2a/x, where a is the pipe radius ; and it 
was ignored because even for the shortest length BC it was only 0.1%. 
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The measured mean diameters of the lengths AC, A B  and BC were 
respectively 2.005, 2.009 and 1.998 in. (the variation of diameter along each 
length being unknown). The first of these values was employed in 
calculating U from the discharge measurements, and the results are shown 
in figure 2 in the form { U(u, y )  - U>/U vs  y. Now figure 2 of the previous 
paper shows that for spheres of the same density as water d(U(u)/U)/du 
is roughly t near M = 0-1. So, if the pipe cross-section is diminished by 
1%, thus raising U by the same amount and u by the increase in 
{U(u) -  U)/Uis 0.0025. The correction to the observations in A B  and AC 
is therefore small; and it has not been made in figure 2 since a greater 
precision in the absolute value of U cannot be claimed. 
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Figure 2. Effect of density upon mean velocity. 0 AC, x AB, + BC. 

Near y = 0 the results lie somewhat below the value 0.075 that was 
Iound in the earlier work for u = 0.1. The discrepancy is probably due to 
the relatively crude method then used for determining the discharge. 
Even with the more refined method used in the present work, it is difficult 
to determine U with the accuracy that is readily achieved in the measurement 

The variation of the mean velocity of the spheres with relative density 
may be due to inertia or to gravity effects (or to a combination of both). 
The former effect is difficult to analyse, but it is unlikely to  be the same 
for equal and opposite departures of the relative density from 1.0. The 
gravity effect, on the other hand, is obviously the same for light and heavy 
spheres whose densities differ from that of water by amounts of the same 
magnitude. I t  is also probable that the effect of gravity is to diminish 
the mean velocity of non-neutral spheres, because the trajectory of lighter 
or heavier spheres is to a greater extent in regions near the wall at the top 

of U(a,  7). 
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or bottom respectively of the pipe, where the velocity of the water is 
smaller. We do in fact see from figure 2 that the results are almost 
symmetrical about the line y = 0, therefore it was probably the effect 
of gravity which produced the changes in U(a, y )  as y was varied. 
The  experimental curve is fairly flat over the range 0.01 > y > -0.01, 
but falls rapidly outside these limits. Thus, for a = 0.1 at any rate. 
spheres made within these limits will move with very nearly the same 
mean velocity as spheres of precisely neutral density, the error being no 
more than 0.1 yo. 

For a pipe inclined at an angle #I to the horizontal, figure 2 might perhaps 
be used with y taken as (V/U)cos#I. However, if #I is not a small angle 
it may be necessary to allow for the gravitational drift of the spheres along 
the pipe due to the component Vsin4. 
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Figure 3. Effect of density upon the dispersion coefficient. 0 AC, x AB, + BC. 

Figure 3 shows the values of the longitudinal dispersion coefficient 
K ( a , y ) ,  defined as in equation (19) of the previous paper by 

where u, is the friction velocity, and T ( x )  is the time of travel of a single 
sphere. Unlike { U(a, y )  - U)/U,  the value of K is not sensitive to small 
changes in y ,  and the agreement at y = 0 with the earlier work is satisfactory. 
But the accuracy of these measurements involving the variance of the travel 
times is not high. The  standard deviation of the measured value of K is 
given by elementary statistical theory as a fraction n--1I2 of the true value, 
where n is the number of observations. Here n = 200, so that the expected 
standard deviation is about 14%, which is in accordance with the scatter 
found. However, the results do seem to have a trace of a minimum near 
y = 0. Since the longitudinal dispersion is largely a result of the 
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intermittent excursions of the spheres into the region of lower velocity near 
the wall, an increase in K ( a , y )  when y is different from zero is consistent 
with the above interpretation of the results shown in figure 2. 

4. THEORETICAL DISCUSSION 

There remains the question of accounting for these observations by an 
approximate theory so that predictions can be made concerning the 
behaviour of (U(cc,y) - U } / U  for sphere sizes other than that ( a  = 0.1) 
used in these experiments. If the spheres are not of neutral density, that 
is, if y # 0, the probability density p of the sphere distribution (defined so 
that the probability of finding the centre of the sphere in an element d A  
of the cross-section is p d A )  is not uniform over the cross-section. T h e  
observations show that inertia effects can be neglected as a first approximation 
when y is small, and it can be supposed that as a result of gravity the 
probability density p is a function of the vertical position coordinate z 
only, that is, that the lines of equal probability density are horizontal. 
Then, if V represents the terminal velocity of the spheres (a positive sign 
indicating motion upwards) and if conditions are statistically stationary 
in time, the probable number of spheres rising across unit horizontal area 
per unit time as a result of the action of gravity alone is p(x)V, which must 
be balanced by the downward flux due to turbulent diffusion, u, a1; dp(z) /dz ,  
where u, is the friction velocity and 1; is a dimensionless turbulent diffusivity 
for transport across horizontal planes. I n  general, 1; is also a function of 
position in the pipe, and depends upon the relative intensities of the 
turbulent fluctuations in the vertical direction at different points in the 
cross-section. However, if the sphere size is not so small that its motion 
is affected by excursions into the viscous sub-layer, it is confined to the 
central portion of the flow where the turbulent intensities do not vary by 
a factor of more than about 1.5. A further approximation, consistent with 
takingp = p(z), is to neglect the variation in 1; with position, and to consider 
it as a mean vertical diffusivity for the turbulent flow in a pipe. We then 
have 

so that 

where z‘ = xja. The constant of integration p, is determined by the 
condition that p(z’) integrated over that part of the cross-section accessible 
to the centre of the sphere, that is, a circle of radius (1 - cc)a, must equal 
unity. When y is small, the exponential can be expanded as a power series, 
and the integration is found to give the result 

p ,  = (ra2( 1 - 0()~)-~(1- &(yU/u, LJ2(l - + O(y4)). (3  ) 

Let us now make the further assumption that the mean velocity of 
spheres whose centres are at a radial position r in the pipe is equal to the 
mean velocity u(r)  of the fluid at radius r ,  which was shown in figure 2 of 



94 

the previous paper to be a good approximation for a < 0.15. Taking 
z = r cos 0 and r f  = rla = x‘/cos 0, we see that the mean velocity of a sphere 
down the pipe is given by 
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2n 1-a 

0 0  
U(K,  y )  = a2 1 1 p(i’)u(r‘)r’ dr‘do. (4) 

Substituting from (2) and (3) into (4) and integrating with respect to 8, 
we have, neglecting terms of order y4, 

1-a 
U(a, y )  = U ( M )  - ( YU ) { )(1- J1-‘ ru(r) dr - 4 J” r3u(r) dr}, 

(1 -a)% 5 0 0 

(5) 
where the accents on r f  are suppressed and 

Zn . l - E  

U(a)  = U(a, y = 0) = ( ~ ( 1  -a)”-’ I, j u(r)r drd0. 
0 

Taylor (1954) shows that u(r)  is of the form 

u(r)  = U+ ~ ~ ( 4 . 2 5  - f ( r ) } ,  

u(r)  = U(1-193 -0.0455 f ( r ) } .  

( 6 )  
where f ( r )  is a universal function, and that for Reynolds numbers of order lo5, 
as in our experiments, U/u, + 22. Hence 

(7) 
Equation (5) can then be expressed as 

where 

&(a) = - 11-‘ ru(r) dr = 0.597(1- K ) ~  - 0.0455 j’-‘ r f (r )  dr, 1 
r (9 

UIJ 0 

u o  0 J 
&(a) = - J1-‘ r3u(r) dr = 0.299( 1 - a)4 - 0.0455 jl-“ r ” f r )  dr. I 

a! 

0.02 
0.04 
0.06 
0.08 
0.10 

0.4899 
0.4749 
0.4599 
0.4460 
0.4341 

0.2179 
0.2046 
0.1913 
0.1781 
0.1650 

Table 1. Values of K,(a) and K3(01). 

The integrals on the right of the equations (9) were calculated from 
the figures given in Taylor’s table 1, and the quantities Kl(a) and &(a) 
are given in table 1 for’various small values of u. For cc = 0.1 it is 
then found from (8) that 

(10) Y 2  
= -3-30F* 

Y) - U(d0 
U 
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The experiments with a = 0.1 described in $ 3  enable an estimate to be 
made of the dimensionless diffusivity 5. The ratio (U(cc, y)-  U)/U for 
a = 0.1 and y = 0 was judged to be 0.0615 from figure 2 ; and by subtraction, 
values of {U(a, y )  - U(a)}/U were obtained. The parameter 5 was then 
chosen so that the parabolic form (10) fitted these observations most closely, 
and the value required was found to be 0.46. The mean vertical diffusivity 
is therefore 0 . 4 6 ~ ~ ~ .  It is interesting to notice that the radial eddy 
dzusivity in turbulent pipe flow found in another way is of the same order 
as this, some experiments of Schwarz & Hoelscher (1956) with water vapour 
in air indicating a mean value of approximately 0 . 5 5 ~ ~ ~  in the central 
region of the pipe. 

- 0.04 - 0.02 0 y 0.02 0.04 

Figure 4. Theoretical effect of density upon mean velocity. 

With the value of 5 determined above, the form of ( U ( a , y ) -  U(a)}/U 
for small values of y and for a = 0.06 and 0.02 was found from equation (8), 
and the results are shown in figure 4. For a given value of y, the difference 
between the mean velocity of the spheres down the pipe and the mean 
velocity of those for which y = 0 increases with decreasing diameter ratio a. 
The physical reason for this greater effect of gravity on smaller spheres 
is that small spheres are free to move closer to the walls where the mean 
velocity of the fluid is less and is changing rapidly ; the net effect, then, of 
the increased probability of finding (say) a heavy sphere near the lower 
wall and the decreased probability of finding it near the wall in the upper 
part of the pipe is that, for a given value of y, (U(a,  y )  - U(a)}/U increases 
in absolute value as a decreases. These curves indicate that, provided y is 
held within the limits -tO-Ol, the difference between the mean velocity 
of such spheres and of those for which y is accurately zero is likely to  
be negligible, as has already been established experimentally for a = 0.1. 
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We are greatly indebted to the Plastics Division of Imperial Chemical 
Industries Ltd., who gave us the loaded polythene and carried out the 
hot moulding of the spheres. 
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